

Peer Reviewed National Science Journal

Volume 14. No.1 Jan-Dec.2018 ISSN: 0976-8289

Published by:

PALAKKAD 678006, KERALA, INDIA

Distribution profile of angiosperms across elevation discontinuity of Palghat Gap in Southern Western Ghats

Rekha Vasudevan A^{1,2*} Soumya M³. And Maya C. Nair¹

¹Post Graduate and Research Department of Botany, Govt. Victoria College, Palakkad, Kerala, India – 678001

²Department of Botany, Mercy College, Palakkad, Kerala – 678001

³Environmental Resources Research Centre, Thiruvananthapuram, Kerala, India - 695005

Abstract

Floristic documentation in two forest areas on the north and south of the 32km wide elevation discontinuity of the Southern western Ghats, the Palghat Gap has been undertaken to assess the distribution continuity across the topographic discontinuity. The Kollengode forest range is situated on the South of Palghat Gap and is home to 955 species of angiosperms belonging to 135 families and the Olavakkode range has 655 species of angiosperms coming under 105 families. Of the taxa analysed, 103 families and 302 species are common in both the ranges and the average taxonomic singularity is 0.821 in Kollengode forests while it is 0.845 in Olavakkode range. The endemic taxa recorded in Kollengode forests are 216, while it is 93 in Olavakkode range. It is observed that 8 taxa of Olavakkode range has an exclusive Northward distribution and in contrast, 18 species found in Kollengode range has an exclusive southward distribution. *Strobilanthes lanatus* Nees, *Meteoromyrtus wynaadensis* (Bedd.) Gamble and *Justicia glauca* Rottler from north of Palghat Gap and *Ceropegia thwaitesii* Hook., *Givotia moluccana* (L.) Sreem. and *Diospyros ebenum* J. Koenig from South of the Gap have successfully crossed the dispersal barrier of the mountain pass. The instances of taxa showing habitat sharing on either sides are very less and hence point to the Palghat Gap acting as a barrier in the continuous distribution of taxa.

Key words: Palghat Gap, distribution, dispersal barrier

Introduction

Distribution of vegetation patterns are limited by contrasting climatic regimes. Oceanic foothills in the north and strongly continental inter mountain basins in the south of Siberian mountains revealed that winter and summer temperatures and precipitation exerted a dominant influence on species composition¹. The study also revealed that on a more local scale, the main source of variation in species composition was topography, producing landscape patterns of contrasting plant communities on slopes of different aspects and valley bottoms. More over the inquiry on the abundance of alien species was found to be declining with the altitude and in contrast, species richness

among comparable native taxa appeared to be nearly independent of altitude over the same range^2 .

Palghat Gap in Southern Western Ghats is a natural discontinuity which forms a 32km wide corridor between the political boundary between Kerala and Tamilnadu. The Palghat Gap forms an elevation and topographic discontinuity and whether the distribution of plants across the Gap points to the Gap acting as a barrier for dispersal of plants is debatable. In this backdrop, the floristic analysis of two forest ranges, viz. Olavakkode range in north of Palghat Gap and Kollengode range in south of Palghat Gap have been carried out to understand the distributional continuity of angiosperms

* Corresponding author, E-mail: vasudevanrekha94@gmail.com

across the Gap. Special focus has been given to the distribution of threatened and endemic taxa.

Materials and methods

Explorations and collection of angiosperm taxa in the forests of Olavakkode range lying between 10° 45' and 10° 55' North latitude and 76° 50' and 76° 10' East longitude and Kollengode range lying between 10° 25' and 10° 55' North latitude and 76° 35' and 76° 55' East longitude have been done between 2015 and 2018, along with collection of information on distribution of taxa in southern Western Ghats emphasizing Palghat gap. Identification was ascertained with the help of Flora^{3,4,5,6}. The updation of nomenclature was done with and IPNI⁷, Plant list⁸, Tropicos⁹. Threat status was resolved as per IUCN version 13¹⁰ and alien invasive plants were identified from the latest literature¹¹.

Results

Species diversity

The explorations revealed the presence of 1610 species of angiosperms in the forests of the two ranges. The forests in Kollengode range has 955 species belonging to 135 families and the forests in Olavakkode range has 655 species belonging to 105 families.

Distributional discontinuities across the

gap

In Kollengode forest range, out of the 955 species, 77 are new distributional record to the district of Palakkad district (Table 1). Of these, 31 species are reported to be present in regions south and north of Palghat Gap, while 23 have been reported only in regions south of Palghat Gap. Three species that were earlier reported only in regions north of Palghat Gap are Strobilanthes lanatus Nees, Meteoromyrtus wynaadensis (Bedd.) Gamble and Justicia glauca Rottler . In Olavakkode forest range out of the 655 species 18 are new distributional record for the district of Palakkad. In the Olavakkode range 16 species are seen that are having exclusively southward distribution and are examples of range expansion from south of the Palghat Gap to the North. There are 6 species present in Olavakkode range that have a continuous distribution in the northward regions of Palghat Gap and hence have been unable to expand across the discontinuity. The species known to be growing in both these ranges number 302 and are examples of continuous distribution of taxa across the Palghat Gap.

New discoveries

Floristic exploration during this study in Kollengode range has brought to light the presence of taxa hitherto not known to science. Sonerila nairii Soumya & Maya¹², Sonerila victoriae Soumya & Maya¹³, Oldenlandia vasudevanii Soumya & Maya¹⁴, Impatiens sasidharanii var. sasidharanii^{15a}), Impatiens sasidharanii var. hirsuta^{15b} are new discoveries from Kollengode range. Olavakkode forest range is the type location for three new species, Chlorophytum palghatense¹⁶, Zingiber sabuanum¹⁷ and Justicia gambleana¹⁸ and an earlier exploration has helped to rediscover Impatiens concinna¹⁹ from forests of Olavakkode range

Distribution of taxa with adaptive traits

The insectivorous genera Drosera is represented by three species namely, D. indica L., D. burmanii Vahl. and D. peltata Thunb. of which only the former is showing continuous distribution across the Gap. Another insectivorous genera Utricularia is represented in the forests of both ranges, with two species, U. lazulina P.Taylor and U. graminifolia Vahl. showing continuous distribution across the Gap. U. aurea Lour. and U. praeterita P.Taylor are present in Kollengode range, but not yet recorded in Olavakkode range, while U. albocaerulea Dalzell is present in the Olavakkode range, but not in Kollengode range. The Orchid flora of Kollengode range is very diverse consisting of 27 species under 16 genera. Olavakkode range harbors much less species of Orchids with 8 species under 8 genera and the two ranges have very unique orchid flora since none of the species is common to both the ranges.

	I. Taxa new distributional record to Palakkad from Kollengode rang	
Sl. No	Binomial	Family
1.	Alseodaphne semecarpifolia Nees var. malabarica Robi & Udayan	Lauraceae
2.	Andrographis atropurpurea (Dennst.) Alston	Acanthaceae
3.	Andrographis elongata (Vahl) T.Anderson	Acanthaceae
4.	Asystasia crispata Benth.	Acanthaceae
5.	Biophytum intermedium Wight	Oxalidaceae
6.	Blumea laevis (Lour.) Merr.	Asteraceae
7.	Blumea oxyodonta DC.	Asteraceae
8.	Cajanus rugosus (Wight &Arn.) Maesen	Fabaceae
9.	Cardamine africana L.	Brassicaceae
10.	Cassytha filiformis L	Lauraceae
11.	Centranthera tranquebarica (Spreng.) Merr.	Orobanchiaceae
12.	Ceropegia maculata Bedd.	Apocynaceae
13.	Cestrum aurantiacum Lindl.	Solanaceae
14.	Cestrum nocturnum L.	Solanaceae
15.	Cheirostylis parvifolia Lindl	Orchidaceae
16.	Cladopus hookeriana (Tul.) C.Cusset	Podostemaceae
17.	Commelina clavata C.B. Clarke	Commelinaceae
18.	Crinum asiaticum L.	Amaryllidaceae
19.	Crotalaria grahamiana Wight &Arn.	Fabaceae
20.	Cryptocarya stocksii Meisn.	Lauraceae
21.	Cyanotis burmanniana Wight	Commelinaceae
22.	Cyathula tomentosa (Roth) Moq.	Amaranthaceae
23.	Cyperus digitatusRoxb.	Cyperaceae
24.	Diodella teres (Walter) Small	Rubiaceae
25.	Diospyros ebenum J.Koenig ex Retz.	Ebenaceae
26.	Dodonaea viscosa subsp. angustifolia (L.f.) J.G.West	Sapindaceae
27.	Drimia indica (Roxb.) Jessop	Asparagaceae
28.	Echinochloa frumentacea Link	Poaceae
29.	<i>Eriocaulon nepalense</i> Bong. var. <i>luzulifolium</i> (Mart.) Praj. &J.Parn	Eriocaulaceae
30.	Gymnema decaisneanum Wight	Apocynaceae
31.	Hardwickia binata Roxb.	Fabaceae
32.	Impatiens sasidharanii var. hirsute Prabhukumaret al.	Balsaminaceae
33.	Impatiens sasidharanii var. sasidharanii Prabhukumaret al.	Balsaminaceae
34.	Ipomoea indica (Burm.) Merr.	Convolvulaceae
35.	Isodon lophanthoides (BuchHam. ex D.Don) H.Hara	Lamiaceae
36.	Justicia glauca Rottler	Acanthaceae
37.	Lagerstroemia parviflora Roxb.	Lythraceae

Table 1. Taxa new distributional record to Palakkad from Kollengode range

	Rekha	Vasudevan	et al: Distribution	profile of a	angiosperms	of Palghat Gap
--	-------	-----------	---------------------	--------------	-------------	----------------

38.	Limnophila aromatica (Lam.) Merr.	Plantaginaceae
		_
39.	Linum mysurense B.Heyne ex Benth.	Linaceae
40.	Luisia tenuifoliaHook.f	Orchidaceae
41.	Memecylon bremeri M.B.Viswan.	Melastomataceae
42.	Meteoromyrtus wynaadensis (Bedd.) Gamble	Myrtaceae
43.	Mollugo nudicaulis Lam.	Molluginaceae
44.	Murdannia gigantea (Vahl) G. Brückn.	Commelinaceae
45.	Murdannia crocea subsp. ochracea (Dalzell) Faden	Commelinaceae
46.	Neanotis indica (DC.) W.H.Lewis	Rubiaceae
47.	Oldenlandia vasudevanii Soumya & Maya	Rubiaceae
48.	Osbeckia gracilis Bedd.	Melastomataceae
49.	Pandanus kaida L.	Pandanaceae
50.	Phyllocephalum courtallense (Wight) Narayana	Asteraceae
51.	Pinalia mysorensis (Lindl.) Kuntze	Orchidaceae
52.	Piper hapnium BuchHam.	Piperaceae
53.	Premna paucinervis (C.B.Clarke) Gamble	Lamiaceae
54.	Pupalia lappacea var. orbiculata (Heyne ex Wall.) Juss.	Amaranthaceae
55.	Scutellaria wightiana Benth.	Lamiaceae
56.	Sesamum indicum L.	Pedaliaceae
57.	Smithia gracilis Benth.	Fabaceae
58.	Solanum viarum Dunal	Solanaceae
59.	Solanum aculeatissimum Jacq.	Solanaceae
60.	Sonerila nairii Soumya&Maya	Melastomataceae
61.	Sonerila veldkampiana Ratheesh, Mini & Sivadasan	Melastomataceae
62.	Sonerila victoriae Soumya & Maya	Melastomataceae
63.	Spermacoce hispida L.	Rubiaceae
64.	Sporobolus tenuissimus (Schrank.) Kuntze	Poaceae
65.	Sterculia balanghas L.	Malvaceae
66.	Sterculia foetida L.	Malvaceae
67.	Strobilanthes consanguineus Clarke	Acanthaceae
68.	Strobilanthes lanatus Nees	Acanthaceae
69.	Stylosanthes hamata (L.) Taub.	Fabaceae
70.	Taxillus recurvus Tiegh.	Loranthaceae
71.	Tephrosia maxima (L.) Pers	Fabaceae
72.	Tephrosia pumila (Lam.) Pers.	Fabaceae
73.	Thunbergia tomentosa Wall. ex Nees	Acanthaceae
74.	Tiliacora racemosa Colebr.	Menispermaceae
75.	Trichosanthes tricuspidata Lour var. tomentosa	Cucurbitaceae
76.	Tylophora ovata (Lindl.) Hook. exSteud.	Apocynaceae
77.	Zingiber wightianumThwaites	Zingiberaceae
11.	Lingioer wighthantant inwalles	Lingiberaceae

Scientia Jan-Dec,2018

Sl. No.	Binomial	Family
1	Thottea sivarajanii E.S.S.Kumar, A.E.S.Khan&Binu	Aristolochiaceae
2	Miliusa gokhalaei	Annonaceae
3	Dioscorea belophylla (Prain) Voigt ex Haines	Dioscoreaeae
4	Dioscorea hamiltonii Hook.f.	Dioscoreaeae
5	Dioscorea wightii Hook.f.	Dioscoreaeae
6	Phrynium pubinerve Blume	Marantaceae
7	Amomum ghaticum K.G.Bhat	Zingiberaceae
8	Eriocaulon conicum (Fyson) C.E.C.Fisch.	Eriocaulaceae
9	Cymbopogon citratus (DC.)Stapf	Poaceae
10	Ischaemum barbatum Retz.	Poaceae
11	Elatostema cuneatum Wight	Urticaceae
12	Memecylon randerianum S.M.Almeida&M.R.Almeida	Melastomataceae
13	Allophyllus serratus	Sapindaceae
14	Cyathula tomentosa	Amaranthaceae
15	Diospyros ebenum J.Koenig ex Retz.	Ebenaceae
16	Justicia japonica Thunb.	Acanthaceae
17	Andrographis elongata (Vahl) T.Anderson	Acanthaceae
18	Utricularia albocaerulea Dalzell	Lentibulariaceae

Discussion and conclusion

The Kollengode and Olavakkode forest ranges are located respectively at the southern and northern boundaries of the Palghat Gap, a 32km wide natural discontinuity of the Southern Western Ghats in the district of Palakkad of Kerala state. The elevation of Palghat Gap is 210m.a.s.l., while the Western Ghats continue to a height of 2637m.a.s.l.at Doddapeta in the Nilgiris in the Northern side of Palghat Gap and to the height of 2533m.a.s.l. in the Palani hills lying South of the Palghat Gap. The discontinuity of Palghat Gap therefore could be a dispersal barrier effecting the continuous distribution of plants along the stretch of the Western Ghats.

The exploration of forests of Kollengode forest range has revealed presence of 77 taxa so far not been recorded in the district of Palakkad. Three of these species are so far reported exclusively from the northern part of the Gap. *Strobilanthes lanatus* Nees, *Meteoromyrtus wynaadensis* (Bedd.) Gamble, and *Justicia glauca* Rottler and their presence in the Kollengode range across the Gap cannot be attributed to any common adaptive feature.

Of the 77 new distributional reports from Kollengode, 23 are known to exist only in regions south of Palghat Gap, but the presence of these taxa in the locality can easily be understood as the range expansion of these species along the continuous elevated topography of the Western Ghats. Out of the 77 new distributional reports 34 taxa are reported from both the north and the south of Palghat Gap and can be considered as successful examples of range expansion.

The exploration of forests of Olavakkode forest range has revealed 18 species to be new distributional reports to the district of Palakkad out of which 5 are previously reported only from regions south of Palghat Gap. Clearly the taxa have successfully dispersed themselves across the barrier of the Gap. Three species among the 18 are previously reported only from regions north of gap, while one taxon is reported only from the district of Palakkad, while the rest of the species are seen both to the north and south of the Gap.

Rekha Vasudevan et al: Distribution profile of angiosperms of Palghat Gap

Sl. No.	Distribution pattern	Таха
1	Plants located North of Palghat Gap and in Kollengode & Olavakkode range of Palakkad district	1.Utricularia lazulina P. Taylor 2.Colebrookea oppositifolia Smith 3.Bauhinia racemosa Lam.
2	Plants located North of Palghat Gap and new distribution report from Kollengode	 Strobilanthes lanatus Nees Meteoromyrtus wynaadensis (Bedd.) Gamble Justicia glauca Rottler
3	Plants of Olavakkode range with only Northward distribution	 Thottea sivarajanii E.S.S.Kumar, A.E.S.Khan&Binu Miliusa gokhalaei Narayanan Actinodaphne lawsonii Gamble Cinnamomum palghatensis M.Gangop. Dioscorea belophylla (Prain) Voigt ex Haines Utricularia albocaerulea Dalzell
4	Plants located South of Palghat Gap and in Kollengode & Olavakkode range of Palakkad district	 Calamus rotang L. Cyanotis papilionacea (Burm.f.) Schult. &Schult.f. Chrysopogon nodulibarbis (Hochst. ex Steud.) Henrard Givotia moluccana (L.) Sreem.
5	Plants of Olavakkode range with only Southward distribution	 Amomum ghaticum K.G.Bhat Crotalaria mysorensis Roth Dalbergia sissoo DC. Trifolium repens L. Givotia moluccana (L.)Sreem. Hopea utilis (Bedd.) Bole Cyathula tomentosa (Roth) Moq. Diospyros ebenum J.Koenig ex Retz. Ceropegia thwaitesii Hook. Toxocarpus kleinii Wight &Arn. Jasminum flexile var. ovatum Wall.ex C.B.Clarke Andrographis elongata (Vahl) T.Anderson Calamus rotang L. Cyanotis papilionacea (Burm.f.)Schult.&Schult.f.) Chrysopogon nodulibarbis (Hochst. ex Steud.)Henrard Bauhinia racemosa Lam.

Table 3. Taxa showing range expansion across Palghat Gap

The range expansion that has been possible for the 95 species shows that 78% of the range expansion has been along the elevation continuity of the Western Ghats while only 23% of the species has been able to expand across the Gap.

Discussing the relationship between tropical climatic uniformity at a given site and the effectiveness of topographical barriers adjacent to the site in preventing movements of plants, Janzen says that 'topographic barriers may be more effective in tropics'. It is the temperature gradient across a mountain range, which determines its effectiveness as a barrier, rather than the absolute height²⁰. The district of Palakkad which lies in the Gap region records the highest average temperature in the state, and could be a factor that influences the range expansion of taxa across the Palghat gap of the Western Ghats.

Examination of the disjunct species distribution patterns in the northern Peruvian seasonally dry tropical forests (SDTFs) suggest that either species migration between the Marañon drainage and the Pacific region over the Andes has recently occurred via the Porculla Gap, or these areas were once continuous before the uplift of the Andes. The Huancabamba Depression in which the Abra de Porculla pass is located separates the northern and southern Andes and serves as a biogeographic barrier to species movement. The RioMaran^{on} valley, is located east of the northwestern Peruvian coastal SDF and connected to them by the lowest mountain pass of the whole Andean chain, the Porculla Pass(2,165 m.a.s.l.). It has been suggested, that this pass has favoured the immigration and exchange of SDF biota, which evolved either in the Maran on vallev or the coastal SDF²¹.Phytogeographical conclusions are often derived from the data obtained on the distribution of plant groups in topographically isolated sites. The plant groups typical of the AmotapeHuancabamba Zone in Ecuador – Peru region (Nasa triphylla group, N. ser. Alatae, Ribes andicola group, Nasa picta subsp. picta) find their southeastern distribution limit in the northern part of the province Pataz, and are

References

- Chytrý, M., Danihelka, J., Kubešová, S., Lustyk, P., Ermakov, N., Hájek, M., Hájková, P., Kočí, M., Otýpková, Z., Roleček, J., Řezníčková, M., Šmarda, P., Valachovič, M., Popov, D., Pišút, I.,2008. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecol. 196, 61–83. https:// doi.org/10.1007/s11258-007-9335-4
- 2. Becker, T., Dietz, H., Billeter, R., Buschmann, H., Edwards, P.J., 2005. Altitudinal distribution of alien plant species in the Swiss Alps. Perspect. Plant Ecol. Evol. Syst., Plant invasions into

replaced by their southern counterparts (*N. poissoniana* group, *Ribes viscosum*) immediately south of this pass height of Abra de Porculla²². Elevation and geographic location were the dominant environmental gradients underlying the variations in species composition in Alpine ecosystems of the Hengduan Mountains, northwest Yunnan, China²³.

Evidently elevation continuity is indeed a favourable element in the successful range expansion of species. The declining abundance of alien species with altitude certainly promotes migration and range expansion of native species. The mountain pass therefore is a barrier to the successful range expansion of taxa as is evident from the fact that 77% of the plants that has succeeded in expanding their habitat range has been unable to do it across the Palghat Gap region.

Acknowledgement

We gratefully acknowledge the UGC, Govt. of India and KSCSTE, Govt. of Kerala for the financial support, DCE, Govt. of Kerala, for granting permission to do research, the authorities of Govt. Victoria College, Palakkad, the officials of Forest Dept., Kerala, ERRC, Thiruvanathapuram, and authorities of Mercy College, Palakkad for supporting this research.

> mountain areas 7, 173–183. https://doi. org/10.1016/j.ppees.2005.09.006

- Gamble J. S., Fischer C. E. C., 1935. The Flora of Presidency of Madras.(Vol 1-3) Bishen Singh Mahendrapal Singh. Dehradun
- 4. Hooker, J.D., 1890. *The Flora of British India* (Vol. 1-7). L. Reeve.and Co. London
- 5. Sasidharan N.,2004. Flowering Plants of Kerala
- Vajravelu E.,1990. Flora of Palghat District-including Silent Valley National Park, Kerala. BSI, Calcutta
- 7. http://www.ipni.net
 - http://www.theplantlist.org

8.

Rekha Vasudevan et al: Distribution profile of angiosperms of Palghat Gap

- 9. http://www.tropicos.org
- 10. www.iucn.org
- 11. Ayyappakutty, S., Sankaran, K.V., Kfri, T.V.S., 2013. Handbook on invasive plants of Kerala
- Murugan, S., Nair, M.C., 2016. Sonerila nairii (Melastomataceae) – a new species from the southern Western Ghats, India. PhytoKeys 15–23. https://doi.org/10.3897/ phytokeys.62.7623
- Soumya, M., Rampradeep, R., Jisha, K., Arabhi, P., Rekha, V.A., Nair, M.C., 2017a. Sonerila victoriae, a new species of Melastomataceae from Southern Western Ghats, India. Phytotaxa 324, 187–192. https://doi.org/10.11646/ phytotaxa.324.2.7
- Soumya, M., Sojan, J., Suresh, V., Nair, M.C., 2017b. Oldenlandia vasudevanii (Spermacoceae, Rubiaceae) a new species from the Southern Western Ghats, India. Phytotaxa 305, 41–46. https://doi. org/10.11646/phytotaxa.305.1.6
- Prabhukumar, K.M., Omalsree, M., Hareesh, V.S., Bhaskar, V., Nirmesh, T.K., Sreekumar, V.B., Balachandran, I., 2015. Two new taxa of Impatiens L. (Balsaminaceae) from Western Ghats of India. Phytotaxa 238, 255–264. https:// doi.org/10.11646/phytotaxa.238.3.4
- Kumar, K.M.P., Hareesh, V.S., Vimal, K.P., Balachandran, I., Yadav, S.R., 2014.
 A new species of Chlorophytum (Asparagaceae) from southern Western Ghats of India. Phytotaxa 188, 282. https://doi. org/10.11646/phytotaxa.188.5.6

- 17. Prabhukumar, Konickal Mambetta., Joe, A., Balachandran, I., 2016. Zingiber sabuanum (Zingiberaceae): a new species from Kerala, India. Phytotaxa 247, 92–96. https://doi.org/10.11646/phytotaxa.247.1.7
- Prabhukumar, K. M., Robi, A.J., Hareesh, V.S., Balachandran, I., 2016. Justicia gambleana (Acanthaceae): a new species from Kerala, India. Kew Bull. 71, 39. https:// doi.org/10.1007/s12225-016-9651-8
- Kumar, P. K. M., 2015. Rediscovery of presumed extinct Impatiens concinna Hook.f. (Balsaminaceae) from Western Ghats. Curr. Sci.
- 20. Janzen, D.H., 1967. Why Mountain Passes are Higher in the Tropics. Am. Nat. 101, 233–249. https://doi.org/10.1086/282487
- Linares-Palomino, R., Kvist, L.P., Aguirre-Mendoza, Z., Gonzales-Inca, C., 2009. Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests. Biodivers. Conserv. 19, 169. https://doi.org/10.1007/s10531-009-9713-4
- 22. Weigend, M., 2013. Observaciones adicinales sobre la biogeografía de la zona de AmotapeHuancabamba en el norte del Perú: definiendo el límite suroriental. Rev. Peru.Biol.11.https://doi.org/10.15381/rpb. v11i2.2447
- Sherman R., Mullen R., Haomin L., Zhendong F., Yi W., 2008. Spatial patterns of plant diversity and communities in Alpine ecosystems of the Hengduan Mountains, northwest Yunnan, China. J. of Pl. Eco. 1(2) 117-136. https://doi: 10.1093/jpe/ rtn012

Scientia (Annual)		
Volume 14. No.1 🔶	Jan-Dec.2018 🔶	ISSN: 0976-8289

